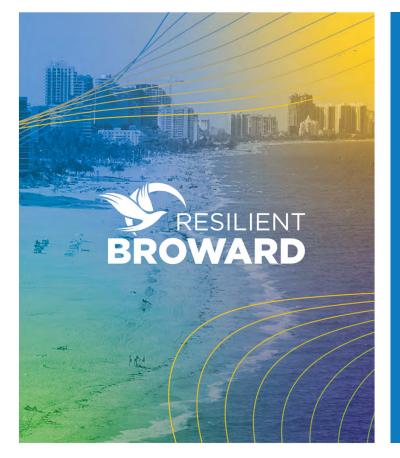


Resilience Steering Committee Countywide Risk Assessment and Resilience Plan


October 12, 2022

Outline

- 1. Reflection on Hurricane Ian
- 2. Update on data collection from stakeholders
- **3.** Incorporation/use of data for hydrologic model
- 4. Update on economic modeling/follow-up from prior discussion
- 5. Review of progress and impacts on schedule
- 6. Introduction to "the Platform"
- 7. Next Steps/Upcoming Activities

1 Reflection on Hurricane Ian

NEWS

HOME > SUSTAINABILITY

Hurricane Ian hit southwest Florida just as the state put historic amounts of money into climate resilience. Now officials have to move faster.

Hurricane Ian flooded neighborhoods like this one in Fort Myers, Florida. Photo by Ricardo Arduengo/AFP via Getty Images

Frequency, Return Period, and Compound Probability

Return Period (symbolized as **Tr**) **provides an estimate of the probability that the magnitude of a given event be exceeded**. For example, if the 100-year return period flow value for a river is 5,000 cfs, it means that there is a 1 in a 100 or 1% chance that this flow will be exceeded in the river in a given year.

Tr = 1/ P

If there are 99 black balls in a lottery hopper, along with one red ball (100 ball total), and a person randomly picks one ball from the hopper. The probability of that ball being red is:

P = 1/100 = 1%.

If the red ball is put back in the hopper, the probability of the next ball being picked from the hopper being red again is also 1% (independent events).

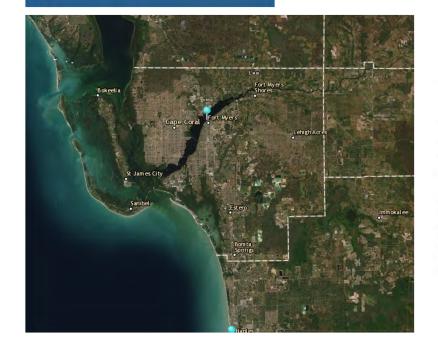
If the same experiment is done in parallel with 99 black balls and one white ball. The probability that a red ball is picked in the hopper and a white ball is picked in the other hopper at the same time is:

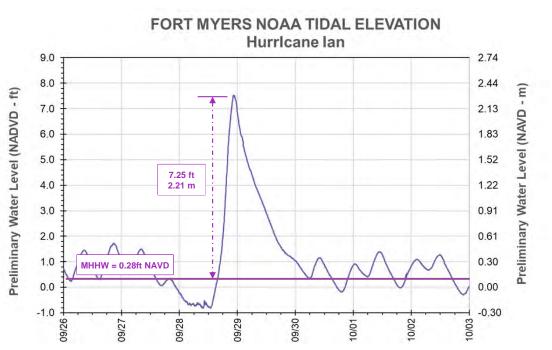
$P_T = P_1 \times P_2$. (If event 1 and event 2 are independent)

This is called the **compound probability.**

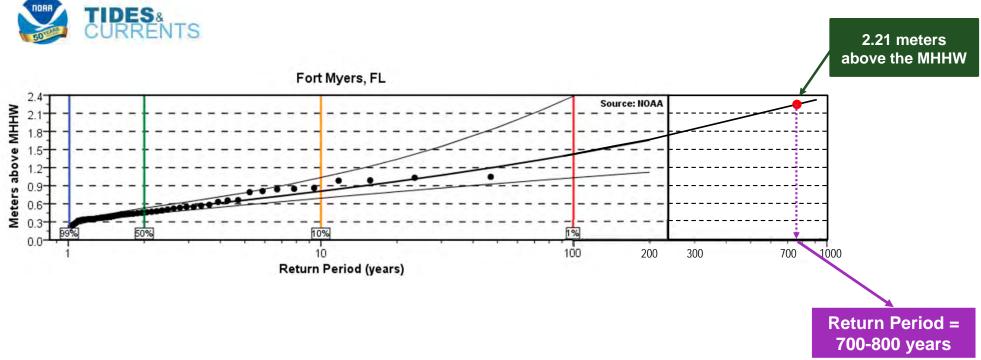
Flooding is caused by the combination of several drivers (e.g. tidal surge + rainfall). Each one of these drivers might have their respective probability of exceedance. Compound Probability is the combination of these probabilities. Since these events are not always independent, the computation of the compound probability of a combined event is more complex.

Hurricane Ian Related Rainfall Depths


Radar rainfall estimates midway through lan ... from other sources Long: -82.778, Lat: 28.878 09/29/2022 01:30 UTC Average Recurrence Interval - 12 hr Return Period [year] A Moody Analytics Company Hurricane Ian: Strongest Hurricane in 200 Southwest Florida Since 2004 100 75 50 The United States Geological Service (USGS) has observed that rainfall at North 40 less than 24 hours, corresponding to a return period that 30 exceeds 1,000 years - all in just 24 hours in that region. he recorded rainfall 20 intensity was more than two inches within 30 minutes between 5-6 p.m. ET. 10 8 _ 6 -4 CON US World Politics Business Opinion Health rtainment Style Travel Sports Vid -3 Hurricane Ian's rainfall was a 1-in-1,000 year 2 event for the hardest-hit parts of Florida 0 **Resilience Plan uses scenarios** that include the 10-, 25-, and 100-year event, Countywide



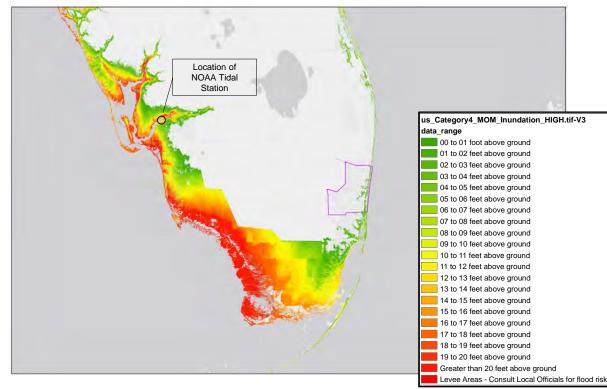
Hurricane Ian Surge in Fort Myers



Hurricane Ian Surge in Fort Myers

https://tidesandcurrents.noaa.gov/est/curves.shtml?stnid=8725520

Hurricane Ian Surge in Fort Myers


📤 Water Level Data 🛛 🕍 N	Meteorological Data III High Tide Flooding Events	Top-10 Water Levels	🗠 Sea Level Trend 🛛 🗠 Exce	edance Probabilities				
NOS/NOAA/CO-OPS Top-10 Highest Water Levels 8725520, Fort Myers FL								
Date	Height (Feet above MHHW)	Event Category	Event	Source				
September 28, 2022	7.25	Tropical	Hurricane Ian					
September 14, 2001	3.36	Tropical	Hurricane Gabrielle	Observed Peak Water Level				
November 23, 1988	3.33	Tropical	Tropical Storm Keith	Observed Peak Water Level				
June 18, 1982	3.29	Tropical	Subtropical Storm One	Observed Peak Water Level				
September 11, 2017	3.06	Tropical	Hurricane Irma	Observed Peak Water Level				
June 25, 1974	3.06	Tropical	Subtropical Storm One	Observed Peak Water Level				
August 13, 2004	2.98	Tropical	Hurricane Charley	Observed Peak Water Level				
August 31, 1985	2.77	Tropical	Hurricane Elena	Observed Peak Water Level				
November 11, 2020	2.74	Tropical	Tropical Storm Eta	Observed Peak Water Level				
October 8, 1996	2.69	Tropical	Tropical Storm Josephine	Observed Peak Water Level				
September 6, 2004	2.69	Tropical	Hurricane Frances	Observed Peak Water Level				

Listing of the top historical water levels, along with the associated weather event. Most values are based on the peak water level observed at the tide gauge. At times where observed water levels are unavailable, values may be taken from high water marks. For additional information or data, please visit the Extreme Water Levels website.

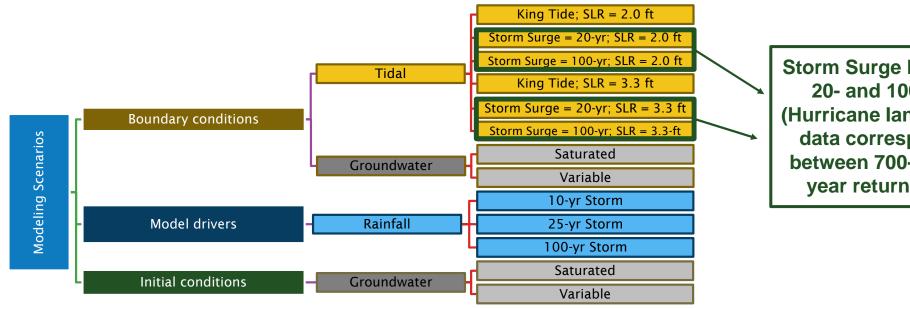
NOAA Estimates for the Surge Produced by a Category 4 Hurricane

NOAA Sea, Lakes and Overland Surges for Hurricanes (SLOSH) Category 4, Max of Max, V3 Model Results

SLOSH results for Hurricane Ian affected area are similar to what was observed. Same set of results indicate much lower effects on Broward County for same Category.

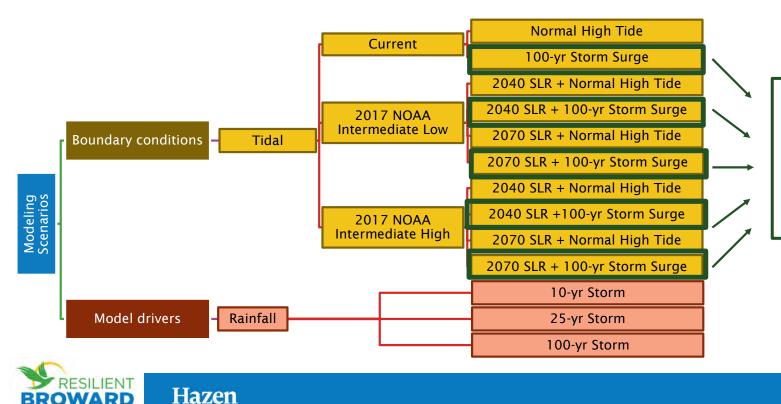
10

Broward County Resilience Plan modeling will consider multiple elements, including the critical impact of storm surge

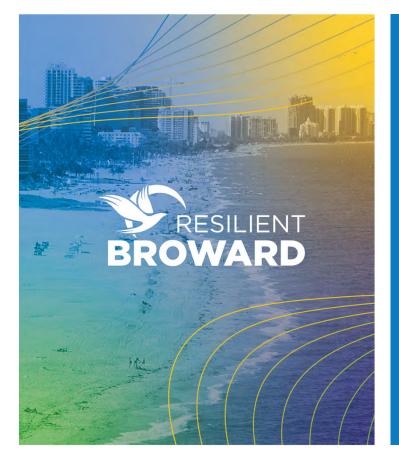

	Rainfall			Sea Level Rise Scenario			cedent dition	Tidal Condition			
	25-yr	50-yr	100-yr	3-day 10-yr + 20%	2.0 ft	3.3 ft	Variable GW	Saturated GW	King Tide	20-yr Storm Surge	100-yr Storm Surge
RP-1	Х				Х		X		Х		
RP-2		Х			Х		X		Х		
RP-3			Х		Х			Х	Х		
RP-4	Х				Х		X			Х	
RP-5		Х			Х		X			Х	
RP-6			X		Х			Х		Х	
RP-7	Х				Х		X				X
RP-8		Х			Х		X				X
RP-9			X		Х			Х			X
RP-10	Х					Х	X		Х		
RP-11		Х				Х	X		Х		
RP-12			X			Х		Х	Х		
RP-13	Х					Х	X			Х	
RP-14		Х				Х	X			Х	
RP-15			X			Х		Х		Х	
RP-16	Х					Х	X				X
RP-17				_			_			_	
RP-18			X	- +			+			+	
RP-19				-			-			-	
RP-20				X	Х		X			X	
RP-21				X	Х		X				X
RP-22				X		Х	X		Х		
RP-23				X		Х	X			Х	
RP-24				X		Х	X				X

The combination of the probability of each one of these parameters will produce the "Compound Probability" of the Scenario. This probability will be associated to the flooding extent obtained from the models.

Hazen

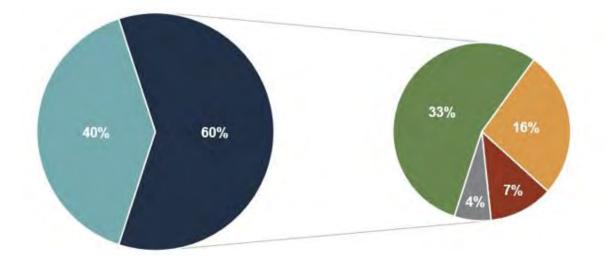

Broward County Resilience Plan modeling will consider multiple elements, including the critical impact of storm surge

Storm Surge Frequency 20- and 100-years (Hurricane lan observed data corresponds to between 700- and 800year return period)



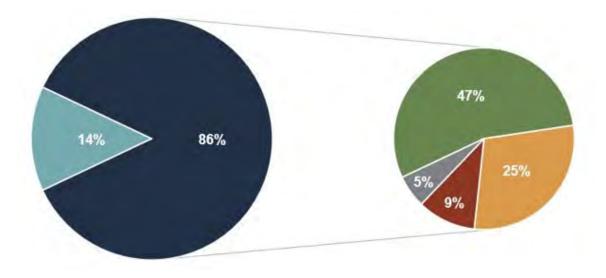
Broward County Vulnerability Assessment modeling will also consider multiple elements, including the critical impact of storm surge

OWARD


Storm Surge Frequency 20- and 100-years (Hurricane lan observed data corresponds to between 700- and 800year return period)

Hazen

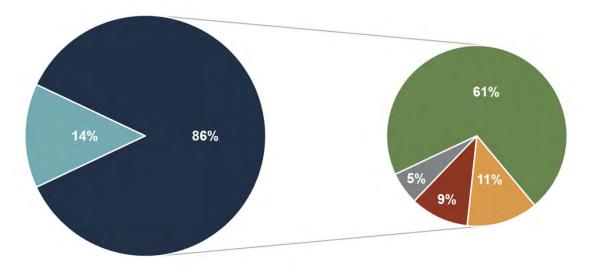
Where we were on August 10th when we last met



- Responsive
- Non-Responsive to Original Request. Reminder Email Sent.
- Data Received

- Request Noted. Expecting Data.
- Data Not Readily Available
- Data Within Hazen's System

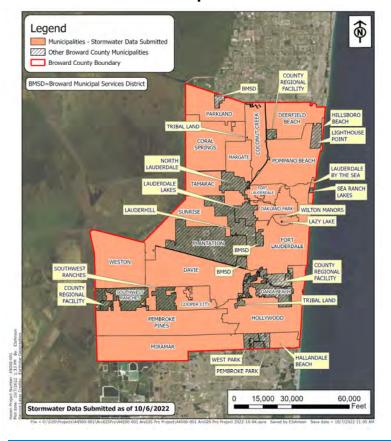
Where we were on September 6th



- Responsive
- Non-Responsive to Original Request. Reminder Email Sent.
- Data Received

- Request Noted. Expecting Data.
- Data Not Readily Available
- Data Within Hazen's System

Where we are now in October (October 6th)



- Responsive
- Non-Responsive to Original Request. Reminder Email Sent.
- Data Received

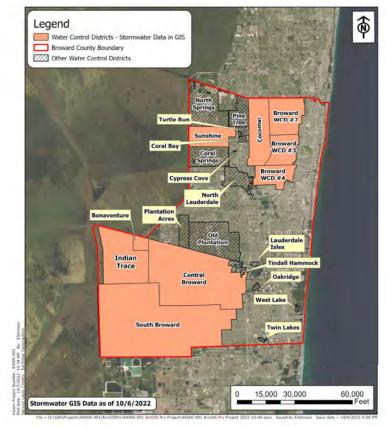
- Request Noted. Expecting Data.
- Data Not Readily Available
- Data Within Hazen's System

Submitted Stormwater Data

Municipalities


Water Control Districts

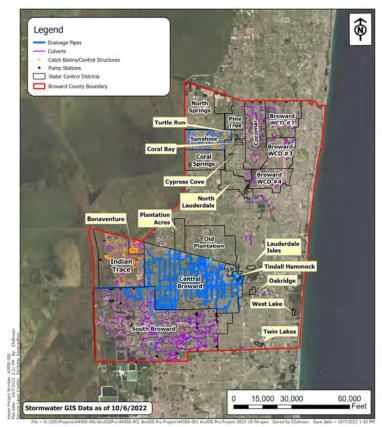
= 0:\GIS\Projects\44500-001\ArcGISPro\44500-001 ArcGISPro Project\44500-001 ArcGIS Pro Project\2022-10-04.aprx Saved by Elohyson Save data = 10/7/2022 1:35 Ph

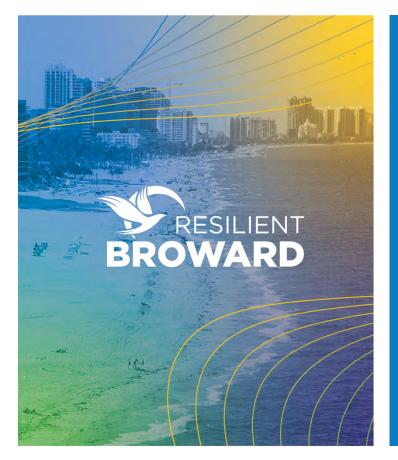


Submitted Stormwater GIS Data

Municipalities

Water Control Districts


Submitted Stormwater **<u>GIS</u>** Data – Continued


BROWARD

Hazen

Municipalities

3

Incorporation/use of data for hydrologic model

Summary of Model Refinement

Model eastern boundary extension

- Include the Intracoastal Waterway in MIKE HYDRO
- MIKE SHE boundary extended to the coast

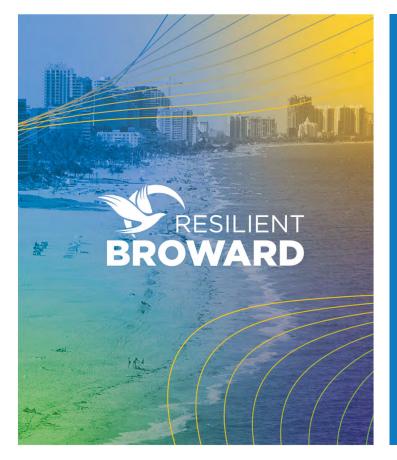
Addition of canals

 Used SFWMD AHED dataset to fill in areas without canals in MIKE HYDRO

Impervious areas

- Image training process
- Cell by cell impervious fraction

Drainage routing revision


- Guided by collected stormwater data
- Include flow controlling structures and storage

Groundwater layering reduction for efficiency

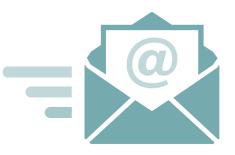
• Use internal boundary condition to simulate vertical fluxes

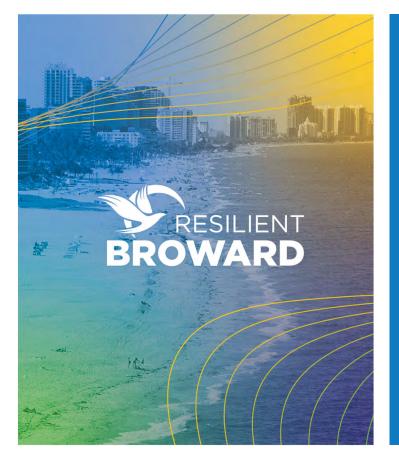
4

Update on economic modeling/follow-up from prior discussions

Types of benefits to be measured in dollars by location (metrics are non-exhaustive and preliminary)

Avoided Loss in:	Avoided Cost of:	Avoided Reduction in:			
Resident and Business income	Emergency services	Property values			
	Increases in property insurance premiums	Value of Recreation days (willingness-to-pay)			
Neighborhood amenities (access to public services)	Increases in mortgage interest rates	Value of Environmental amenities			
	Electricity cost to cool properties	(willingness-to-pay)			
Tax revenue to County and local governments	County borrowing and credit	Government services			

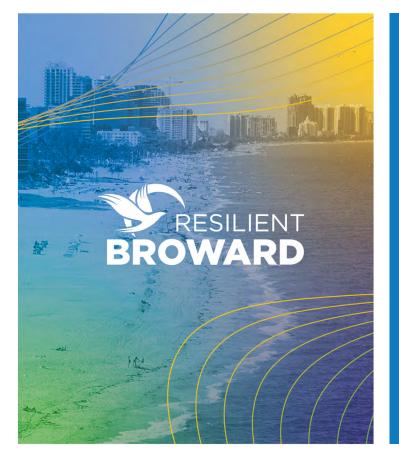



Hazen

Economic modeling methodology was outlined during August 10, 2022 RSC Meeting and is in development

- Dr. Johns sent follow up email on August 15, 2022
 - Still glad to receive follow up questions/comments
 - Particular areas of helpful input may include:
 - Key Sectors to Emphasize
 - Identification of Vulnerable Groups
 - Data Sources
 - Relevant Measurement Metrics
- Methodology review meeting with Vivid Economics on September 22, 2022
- Economic modeling update planned for December 2022 RSC meeting

Review of progress and impacts on schedule


Hazen

Collection of stakeholder data consumed more time than anticipated...

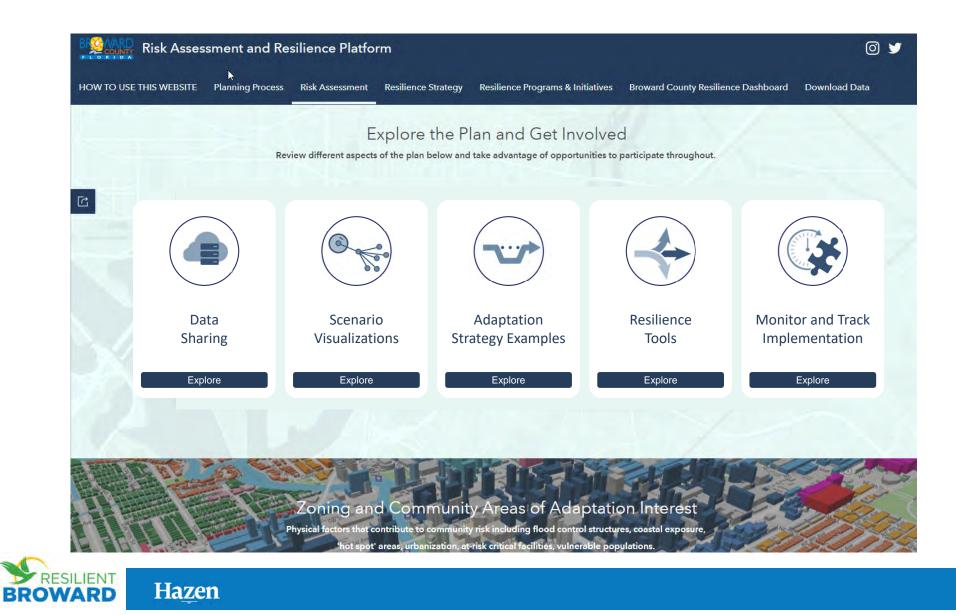
	2022					20	2024			
	1st Quarter Jan Feb Mar	2nd Quarter Apr May Jun	3rd Quarter Jul Aug Sep	4th Quarter Oct Nov Dec	1st Quarter Jan Feb Mar	2nd Quarter Apr May Jun	3rd Quarter Jul Aug Sep	4th Quarter Oct Nov Dec	1st Quarter Jan Feb Ma	2nd r Apr May Jun
1. Project Management/Stakeholder Engagement		and the set line of								
Resilience Steering Committee meeting - June 8, 2022		•								
Data Collection from Stakeholders		1	and the second value of							
2. Hydrologic Modeling										
Resilience Steering Committee meeting - August 10, 2022										
3. County Asset Analysis				1						
Resilience Steering Committee meeting - October 12, 2022				•						
4. Economic Modeling							1.0			
Resilience Steering Committee meeting - December 14, 2022				•			1			
5. Resilience Adaptation Plan					1					
Resilience Steering Committee meeting - Feb 8, 2023					•					
6. Resilience Planning Platform										
Resilience Steering Committee meeting - April 12, 2023						•				
7. Presentation of Results to County and Stakeholders										
Resilience Steering Committee meeting - June 7, 2023				1		•				
8. Prepare and Submit Draft Summary Report and Turnover of Platforms								7		
Resilience Steering Committee meeting - August 9, 2023							٠			
9. Prepare and Submit Final Summary Report										
Resilience Steering Committee meeting - October 11, 2023								•		
Resilience Steering Committee meeting - December 13, 2023								•		
Resilience Steering Committee meeting - February 7, 2024									٠	

... but tasks are on-track for completion in 2024.

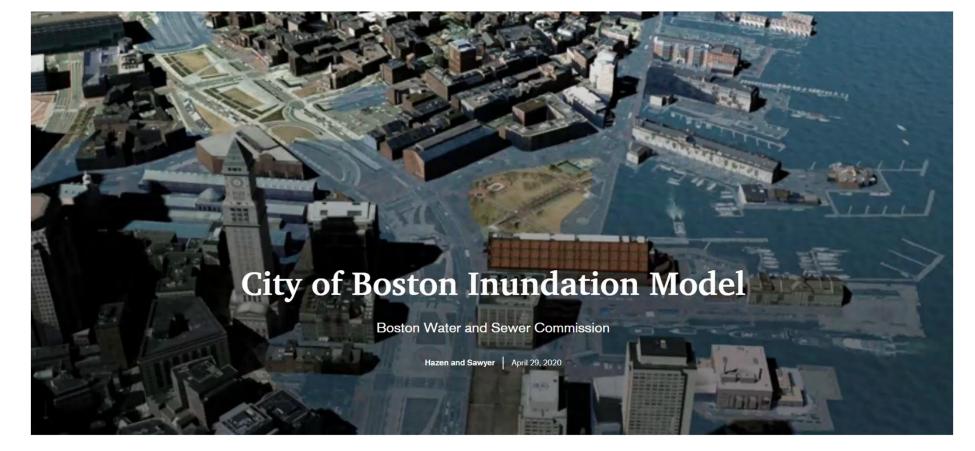
6 Introduction to "the Platform"

C

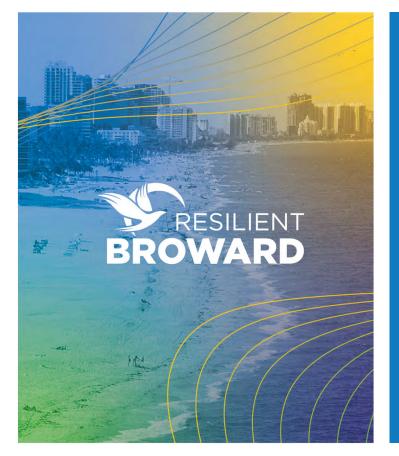
Risk Assessment and Resilience Platform


0 🎔

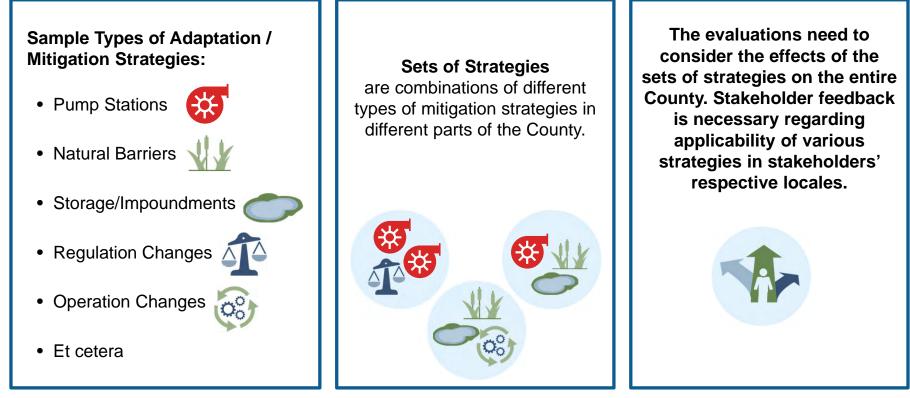
HOW TO USE THIS WEBSITE Planning Process Risk Assessment Resilience Strategy Resilience Programs & Initiatives Broward County Resilience Dashboard Download Data


Broward County is committed to stakeholder involvement and communication in the development of a Countywide Risk Assessment and Resilience Platform. This website serves as a hub of information for diverse stakeholders for informed decision making.

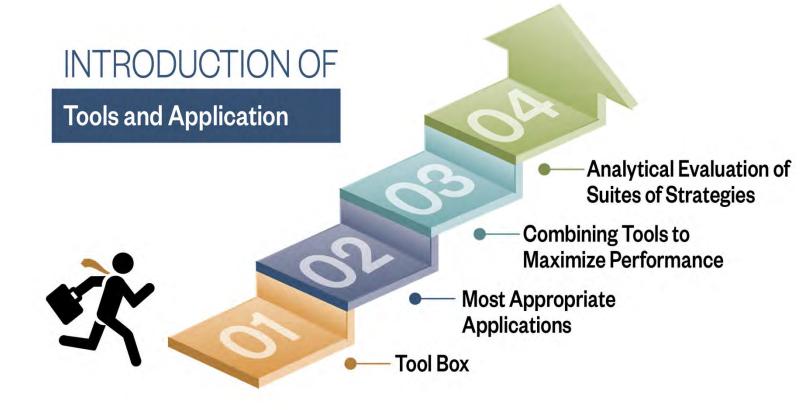
Explore the Plan and Get Involved



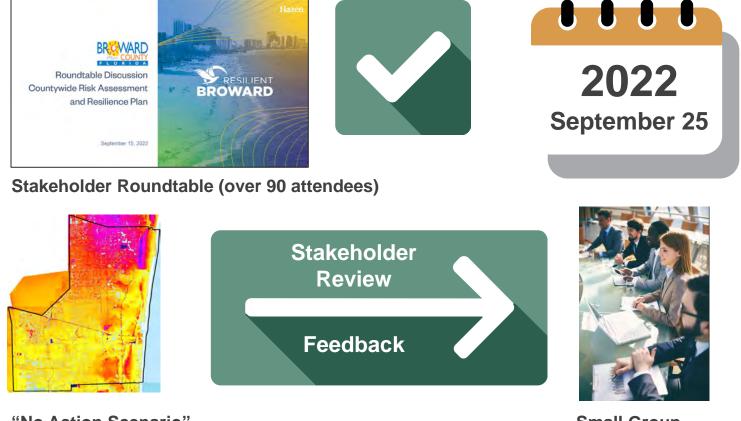
Boston Inundation Model Viewer



Hazen

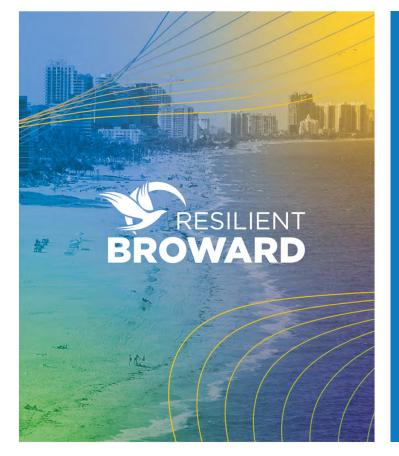

Next Steps/Upcoming Activities

The Resilience Adaptation Plan will include actionable Countywide adaptation and mitigation strategies...



Adaptation strategies are being developed concurrent with "No Action" scenario modeling

We are driving toward further stakeholder engagement



"No Action Scenario" Results – Virtual Workshop (Jan '23)

Small Group Follow Up (2-4 weeks later)

Hazen

Questions